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We start with a recap of the K-means algorithm for clustering. Assume that
we observe a D-variate data set (x1,...,%,), X; € RP Vi, with D > 1.

Goal. Partition the dat ainto K clusters (with K known) so that data points
inside the same cluster have smaller distances with respect to data points in
different clusters.

Formally, let p;, identify the center of cluster k. We want to identify {p }r=1... &
and find a cluster assignment for each data point in order to minimize:

n K
J=)"3 rallxi — ]

1=1 k=1
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We start with a recap of the K-means algorithm for clustering. Assume that
we observe a D-variate data set (x1,...,%,), X; € RP Vi, with D > 1.

Goal. Partition the dat ainto K clusters (with K known) so that data points
inside the same cluster have smaller distances with respect to data points in
different clusters.

Formally, let p;, identify the center of cluster k. We want to identify {p }r=1... &
and find a cluster assignment for each data point in order to minimize:

n K
T=> > rilxi —

1=1 k=1

Distortion measure: Cluster membership of ith

Sum of square distances data POH{t ‘ ‘
between data and the * rg=1 if x;is assigned to
cluster k

assigned centers. herwi
* 13%=0 otherwise
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We start with a recap of the K-means algorithm for clustering. Assume that
we observe a D-variate data set (x1,...,%,), X; € RP Vi, with D > 1.

Goal. Partition the dat ainto K clusters (with K known) so that data points
inside the same cluster have smaller distances with respect to data points in
different clusters.

Formally, let p;, identify the center of cluster k. We want to identify {p }r=1... &
and find a cluster assignment for each data point in order to minimize:

n K
J=") ralxi — pll?
[To solve the minimization problem we need to find values for r;;, and p,., jointly.]

1=1 k=1
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o If we know u,, r;; can be chosen to be one for the closest center to data
point x;. Indeed, J is linear in ;. The terms involving different ¢ are
independent so we can directly minimize Vi:

K
> rillxi — g ll?
k=1

which gives:
1, if k = argmin, |[x; — el

Tik = :
0, otherwise

alessia.pini@unicatt.it



& e K-MEANS CLUSTERING

o If we know u,, r;; can be chosen to be one for the closest center to data
point x;. Indeed, J is linear in ;. The terms involving different ¢ are
independent so we can directly minimize Vi:

K
> rillxi — g l?
k=1

which gives:
1, if k = argmin, |[x; — el

Tik = :
0, otherwise

o If we know 7%, p; are the cluster means. Indeed minumization of J gives:

—_2 i =0
A, ZT"“ — )

,I:_

D i TikXi
= = =
H D i1 Tik
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o If we know u,, r;; can be chosen to be one for the closest center to data
point x;. Indeed, J is linear in ;. The terms involving different ¢ are
independent so we can directly minimize Vi:

K
> rillxi — g l?
k=1

which gives:
1, if k = argmin, |[x; — el

Tik = :
0, otherwise

1. Start with some initial values of p,, and find the 7.
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2. Fix r;; as computed from last iteration and re-compute the p,..

o If we know 7%, p; are the cluster means. Indeed minumization of J gives:

——2 i =0
A, Zrkz — )

,I:_

D i TikXi
= = =
H D i1 Tik
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o If we know u,, r;; can be chosen to be one for the closest center to data
point x;. Indeed, J is linear in ;. The terms involving different ¢ are
independent so we can directly minimize Vi:

K
> rillxi — g l?
k=1

which gives:

Iterative method

1, if k = argmin, |[x; — el
Tik =
w 0, otherwise

o ‘If we know 75, p; are the cluster means. Indeed minumization of J gives:

—_2 i =0
A, ZT"“ — )

,I:_

D i TikXi
= = =
H D i1 Tik
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e Each iteration reduces the value of .J. So the iterative algorithm converges.

e The algorithm might converge to a local minimum of J instead of the
global one.

e The point of convergence (global or local minimum) depends on the ini-
tialization.

alessia.pini@unicatt.it 11
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A mixture of Gaussian distributions can be written as a linear superposition of
Gaussian pdfs:

p(x) = Z TN (x| X )
k=1

Mixing probabilities, Y5, 7+ =1  Gaussian pdf with mean and
covariance matrix 4, 2

alessia.pini@unicatt.it
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Alternative way to define a mixture.
Introduce a binary variable z € R¥ having only one element equal to one and
all other elements equal to zero:

K
Vke{l,...,K} z €{0,1}, and » 2z =1.
k=1

The vector z has K possible states, according to which element is non-zero.
Assume:

K
P(zr = 1) = m, with m € [0, 1],Z7Tk = 1.
k=1

This is equivalent to:

K
p(z) =[] =3+
k=1

alessia.pini@unicatt.it 15
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Let X be a random variable in R with conditional distribution
p(X|zr = 1) = N(x[py,, Xip).

This is also equivalent to

K
p(xlz) = [ N(xlp, B0
k=1

The joint distribution of x and z is of course

p(x,2z) = p(x|z)p(z)

and the marginal distribution of x is

p(x) = p(x|z)p(z) 5 Y mN (x|py, i)

k=1

alessia.pini@unicatt.it
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Let X be a random variable in R with conditional distribution
p(X|zr = 1) = N(x[py,, Xip).

This is also equivalent to

K
p(xlz) = T Ny, So).
k=1 Equivalent
formulation of a
Gaussian mixture

p(x,2) = p(x|z)p(z) involving the latent

variables z.
and the marginal distribution of x is /

p(x) = p(x|z)p(z) 5 Y mN (x|py, i)

k=1

The joint distribution of x and z is of course

alessia.pini@unicatt.it 17
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We define an additional useful quantity:

p(x|zr = 1)P(2, = 1)

zk) = Pz = 11x) = —5
v(2k) = P( %) S plxlon = DP(; —

_ TN X[y, X
o K
Zj:1 WjN(X“ija ¥5)

Posterior Prior probability of
probability of component k
component k

1)
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We define an additional useful quantity:

p(x|zg = 1)P(z, = 1)
S p(x|z = 1)P(z; = 1)
_ TN (X[ oy, X))

Yo TN (x|, 55)

Y(zk) = Pz, = 1|x) =

Posterior Prior probability of
probability of component k
component k

The quantity v(zx) is also called responsibility: responsibility that component
k takes for explaining the observed xy.
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Random sample (K = 3):
e First generate z.

e Second generate x|z.

0 0.5 1

Joint distribution

0 0.5 1 0 0.5 1

Marginal of x Responsibilities
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Assume now that we observe (xi,...,X,), and that we want to model them
as a mixture. Let X be the (n x D) data matrix. Similarly, denote as Z the
(unobserved) (n x D) matrix of the latent variables. The log-likelihood is the
following:

n K
g(X|7T, H, Z) — lnp(X|7r, M, E) — Zln <Z WkN(Xi’“’ka Ek))
k=1

=1

The parameters of the model 7y, p;., 2, can be obtained by maximizing the
log-likelihood.

alessia.pini@unicatt.it
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ESTIMATION

For simplicity, assume D = 1 and K = 2. Let 3 = 7, 01 = s, for the first

component and g = x;, oo — 0 for some j =1,...,n. Assume 7,7 > 0.
In this example, the log likelihood is

Z In (71 N (2;|Z, $5) + T2 N (z;]2i, 03))
i=1

— Zln (WlN(aﬁi‘f, Sa;) + 7T2N(5137;’$i, U%)) +
17

+1In (WlN(xj]T, sz) + 2N (zj|z;, 03))

alessia.pini@unicatt.it 22
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For simplicity, assume D = 1 and K = 2. Let 3 = 7, 01 = s, for the first
component and g = x;, oo — 0 for some j =1,...,n. Assume 7,72 > 0.

In this example, the log likelihood is

Zln (1N (2:|Z, 85) + 72N (2;]2i, 03))
1=1

— Zln (WlN(aﬁi‘f, Sa;) + 7T2N(37i’$’i7 U%)) +
17

+1In (WlN(xj]T, sz) + 2N (zj|z;, 03))

p(x)

The second term is infinite for oo — 0. So, the max of the log likelihood is

infinite, and it correspond to a singular solution!

(¢ !4 ‘
va
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For simplicity, assume D = 1 and K = 2. Let 3 = 7, 01 = s, for the first

component and g = z;, oo — 0 for some j =1,...,n. Assume 7,7 > 0.
In this example, the log likelihood is

> In (1N (@[, 5,) + 72N (@3], 03))
i=1

]
+1In (WlN(xj]T, sz) + 2N (zj|z;, 03))

The second term is infinite for 05 — 0. So, the max of the log likelihood is
infinite, and it correspond to a singular solution!

This holds in general, for D > and K > 2: if we have at least two compo-

nents in the mixture, the likelihood cannot be directly maximised. We should
instead seek for non-singular local maxima.
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anolicd Sic,
AW UNIVERSITA
v~ : CATTOLICA
%7 & del Sacro Cuore

EXPECTATION
MAXIMIZATION ALGORITHM
FOR GAUSSIAN MIXTURES

oA N

alessia.pini@unicatt.it

25



MR- UNIVERSITA
o aoic EM FOR GAUSSIAN MIXTURES
X & del Sacro Cuore

Maximizing the log-likelihood for finding p, .

n K
o4 TN (X |y, 2
k i=1 Zj:l Tk (X’L‘u’j7 .7) k—1
K
=7(2ik) ) (X — py) =
k=1
1 mn
j{“’k ~ ZV(Zik)Xi} (1)
i=1

n The mean of component k is a weighted
ng = Z v(zik) mean of all data points where the
i=1 weights are the responsibilities.

alessia.pini@unicatt.it 26



AP UNIVERSITA
mp ooicc EM FOR GAUSSIAN MIXTURES
X & del Sacro Cuore

Maximizing the log-likelihood for finding .

ol
oy, 0

1 mn
1Tk = > v(zin) (% — gy ) (%5 — pay,)’
1=1

The variance of component k is a
weighted mean of the contributions to
variance of all data points where the
weights are the responsibilities.

alessia.pini@unicatt.it

27



£ L% EM FOR GAUSSIAN MIXTURES

Maximizing the log-likelihood for finding m;.

In the case of 7, we cannot directly look for a stationary point of the log-
likelihood, since we also have the constraint Zszl 7 = 1. We use Lagrange
multipliers: we need to maximize

K
O(X |7, 2) + A (Zwk — 1)
k=1

25:177’6_120
2L+ A=0

87‘(’]{;

_ k
Tk = &

N {Aj”f (3)

The mixing probabilities are the effective
number of data points contributing to each
component divided by n.
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] — | .
Hi = — V(zik ) X D, — — E 2 ) (X; — X; — /
Nk ; ny, = ¥(2ik ) ( P ( Ky = 7?,"{‘;

Observe that (1) 4+ (2) 4+ (3) do not give a closed-form solution, since all terms
are expressed as a function of the responsibilities v(z;x), which in turn depend
on {7y, Ky, 2k tk=1,...n iD & complex way.

However, they suggest an iterative way for finding a solution:

1. Start choosing values for {mg, py,, Xk =1, n-
2. E step: use the current values of {my, pr, X tx=1,... n to evaluate v(z;x).

3. M step: re-estimate all parameters using (1), (2), (3), and the current
value of v(zk).

4. Check for convergence. If convergence is not met, return to step 2.

alessia.pini@unicatt.it 29
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k-means. It is based on a hard assignment: each data point only belongs to
one cluster.

EM. It is based on a soft assignment: at the end of the algorithm, we have
posterior probabilities of belonging to one mixture component, that can
be viewed as posterior probabilities of belonging to one cluster.

Relation between the two methods.

Assume that Y, = €I, where € assume the same value for all mixture compo-
nents. Assume also that € is a fixed known constant (we don’t want to estimate
it). The Gaussian pdf becomes

1 1
p(X’N’k? Ek) = W exp {—iHX - ”k|’2}

alessia.pini@unicatt.it
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E-step:
The responsibilities are:

T exp(—||xi — pg[|*/2€)
K
Zj:l mjexp(—||x; — p;([?/2€)

V(zik) =

Consider now the limit of v(z;;) for € — 0. In the denominator, the term j for
which ||x; — p;|| is the smallest goes to 0 most slowly. So:

. 0 Vi#j
lim () = 40 7
e—0 1 1= 7

So, each data point is assigned to the cluster with the closest mean!
Note that this is independent on the 7, as long as they all are strictly positive.

alessia.pini@unicatt.it
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M-step:
We only need to find u,;, since the E-step does not depend on the 7, and € is
fixed. In this case, we have trivially from (1):

1 mn
My — — Zik ) Xq

Where ni = > | v(zix) is the number of points assigned to cluster k, since
v(zik) are either zero or one. Hence u, are exactly the cluster means (as in
K-means).

alessia.pini@unicatt.it
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M-step:
We only need to find u,;, since the E-step does not depend on the 7, and € is
fixed. In this case, we have trivially from (1):

1 mn
My — — Zik ) Xq

Where ni = > | v(zix) is the number of points assigned to cluster k, since
v(zik) are either zero or one. Hence u, are exactly the cluster means (as in
K-means).

K-means is the limit of an EM algorithm obtained when the variance is constant
for each component and goes to zero (in order to induce hard assignment).
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Given a joint distribution p(X, Z|0) over observed variables X, latent variables
Z and parameters 8, the goal is to maximize the likelihood with respect to 6.
The general EM algorithm work as follows.

1. Choose an initial setting for the parameters 8°'¢.

2. E-step. Evaluate the posterior probabilities p(Z| X, 8°%). Use it to find
the expectation of the log-likelihood, that is

Expectation

Q(6,6°%) = > " p(Z|X,0°) Inp(X, Z|6)
Z

3. M-step. Maximize the expected log-likelihood finding a new set of pa-
rameters 6"°":

0" = arg max Q(6, HOld)
0

4. Check for convergence of the method (in either the log-likelihood or in the
parameter values). If the convergence criterion is met, stop. Otherwise,

set
Hold « Hnew

and return to step 2.

alessia.pini@unicatt.it
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Given a joint distribution p(X, Z|0) over observed variables X, latent variables
Z and parameters 8, the goal is to maximize the likelihood with respect to 6.
The general EM algorithm work as follows.

1. Choose an initial setting for the parameters 8°'¢.

2. E-step. Evaluate the posterior probabilities p(Z| X, 8°'%). Use it to find
the expectation of the log-likelihood, that is

Q(6,6°%) = > " p(Z]X,6° ) Inp(X, Z|6)
Z

o
o
® [3. M-step. Maximize the expected log-likelihood finding a new set of pa-
N
é‘ rameters 6"°":
"5 0"°" = arg max Q(0, 8°'%)
e 6
=
4. Check for convergence of the method (in either the log-likelihood or in the

parameter values). If the convergence criterion is met, stop. Otherwise,
set

Hold « Hnew

and return to step 2.

alessia.pini@unicatt.it
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Remind that our goal is to maximize
p(X16) = > p(X, Z|6)
Z

where X collects all the observed variables, and Z collects all the latent variables.
Assume that the direct maximization of p(X|0) is difficult (and might lead to
singular solutions), while maximization of p(X, Z|0) is significantly easier.
Introduce an arbitrary distribution ¢(Z) on the latent variables. First, we note
that for arbitrary ¢(Z) we have the decomposition:

Inp(X10) = L(q,0) + KL(q||p)

with:
Expected
: L(q,0) =) q(2)In (p (X, ZZ |9)) > likelihood
Kullback-Leibler ~ q(2) under g(Z)

divergence between
p(Z|X,0
q(Z) and p(Z|X,0) \KL (allp) = Z e ( ‘ >)

alessia.pini@unicatt.it 38
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To prove the decomposition, observe that:

Inp(X, Z|0)

=Inp(Z|0) + Inp(X|0)

Zq ) Inp(Z]60) + Inp(X|6) — Ing(Z)]

_Zq ) In p(X|0) —I—Zq (p;(ZZ“?)

=Inp(X|0) > q(Z) — KL(q||p)
Z

= Inp(X|6)

— KL(q|lp)

)

alessia.pini@unicatt.it
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Inp(X1|6) = L(q,0) + KL(q||p)

Remember that the Kullback-Leibler divergence between two probability distri-
butions is a measure of distance between the two distributions. In particular,

KL(q||p) > 0, and

KL(q|lp) =0 <= q(Z) = p(Z|X,0)

¥ ¥
KL(q|p)
—
L(q,0) Inp(X|0)
y y

alessia.pini@unicatt.it
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Now, come back to the EM algorithm. Suppose that the current value of the
parameters is 8°“. The distribution ¢(Z) will be our estimate of the posterior
probabilities p(Z|X, 0).

E-step.

In the E-step, ¢(Z) = p(Z| X, 6°'%). This is equivalent to maximizing £(gq, 8°%)
with respect to ¢(Z). Indeed, In p(X|0°'“) does not depend on ¢(Z), so L(g, 8°'%)
is maximized when KL(g||p) = 0.

¥ ¥ KL(¢q||p) =0 5 % N
KL(ql|p)
@
¥ - et e do4.
T
g2
L(q,0) In p(X16) L(q,6°%) In p(X|6°')
y y A J A J

alessia.pini@unicatt.it
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M-step.
Now, q(Z) is held fixed, and L(q, ) is maximized with respect to 8, obtaining
new parameters 0"°". This will cause L(q,0) to increase, and in particular

L(q,0™?) > L(g,0°?). In addition, we will also have a non-zero K-L divergence,
since ¢(Z) = p(Z|X,0°%) # p(Z| X, 0™"). So:

np(X[67") > Inp(X|6°%)

KL(qllp) [
KL(q|lp) =0 -------r--___ -

KL(ql|p)

E-step
M-step

L(q,0) Inp(X|6) L(q,0°%) In p(X|6°'9) £(q,8°7"] In p(X|0"™)

alessia.pini@unicatt.it 42
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« Algorithm defined in general to find parameters of a model where we have
both observed variables and unobserved latent variables.

« Mixtures of Gaussians

« Bernoulli mixtures

« Missing data

« Hidden Markov Models

» In the case of Mixtures of Gaussians, it has an easy formulation. In such a

case, we can show that it is closely relater to k-means clustering.

» We can prove convergence in the general case.
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