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Bootstrap estimate of the variance.

We start from a sample x of size n, with z; ~ F, Vi = 1,...,n. Assume that
we want to estimate the parameter 6 = ¢(F) with the estimator = s(x) (not
necessarily the plug-in estimator).

The aim is to understand how variable is é, without knowing the data distribu-
tion F'.

alessia.pini@unicatt.it



MKW UNIVERSITA
L & TN BOOTSTRAP
% < del Sacro Cuore

Bootstrap estimate of the variance.

We start from a sample x of size n, with z; ~ F, Vi = 1,...,n. Assume that
we want to estimate the parameter 6 = ¢(F) with the estimator = s(x) (not
necessarily the plug-in estimator).

The aim is to understand how variable is é, without knowing the data distribu-
tion F'.

L»[ Nonparametric Bootstrap ]
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Bootstrap estimate of the variance.

We start from a sample x of size n, with z; ~ F, Vi = 1,...,n. Assume that
we want to estimate the parameter 6§ = ¢(F) with the estimator = s(x) (not
necessarily the plug-in estimator).

The aim is to understand how variable is é, without knowing the data distribu-
tion F'.

Boostrap idea: even though we do not know the data distribution F', we can
try to estimate it using the empirical distribution F', that is a consistent esti-

mate.

Then, we can proceed like in Monte Carlo simulation, generating samples of

size n from the empirical distribution F:

x* = (7} %) It is a sample of size n drawn
Lo oot with replacement from the

original one, whose elements can
appear zero times, once, twice, ...

alessia.pini@unicatt.it 5
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Bootstrap estimate of the variance.

We start from a sample x of size n, with z; ~ F, Vi = 1,...,n. Assume that
we want to estimate the parameter 6§ = ¢(F) with the estimator = s(x) (not
necessarily the plug-in estimator).

The aim is to understand how variable is é, without knowing the data distribu-
tion F'.

Boostrap idea: even though we do not know the data distribution F', we can
try to estimate it using the empirical distribution F', that is a consistent esti-
mate.

Then, we can proceed like in Monte Carlo simulation, generating samples of
size n from the empirical distribution F':

For each Bootstrap sample we

[ é f g (X *) ]/ obtain a replication of the

estimated value of theta.
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Bootstrap estimate of the variance.

Finally, we obtain the Bootstrap estimate of the variance (and standard error)

of 0

Varp = Varp(é*)

sép zsep(é*).

Standard error and variance
under the empirical distribution.
A closed formula is usually not

available!
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Bootstrap estimate of the variance.

Finally, we obtain the Bootstrap estimate of the variance (and standard error)
of 6:

Varp = Varp(é*)

sép zsep(é*).

e In the absence of a closed formula we can directly compute the standard
error and variance of all possible Bootstrap replications (finite number).

e In total we have n” Bootstrap datasets (exact computation can be ex-
tremely time consuming).

e There is only a lower number of distinct samples (samples giving a different
Bootstrap replication).

e If the data assume n distinct values, the total number of distinct Bootstrap
replications is m = (2"n_1) (combinations with repetition from n elements
in groups of n).

alessia.pini@unicatt.it
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Bootstrap estimate of the variance.

Finally, we obtain the Bootstrap estimate of the variance (and standard error)
of 0: - )
Varp = Var;(0")

sép zsep(é*).

¢

Varp(6%) = (05 — 67,7
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Bootstrap estimate of the variance.

Finally, we obtain the Bootstrap estimate of the variance (and standard error)
of 0: - )
Varp = Var;(0")

sép zsep(é*).

¢

j=1 The m distinct datasets do
m A A not have the same
= Z w; (07 — 9?))2 probability of being
j=1 extracted, but such
k probability cam be
> computed and is denoted
here as wj.

alessia.pini@unicatt.it 10
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Bootstrap estimate of the variance.

Finally, we obtain the Bootstrap estimate of the variance (and standard error)
of 0: - )
Varp = Var;(0")

sép zsep(é*).

¢

e, A\
Vara(0*) = | — Y (05 —67,)

nn J (+)
g=1 The number m of distinct
m - - » datasets is lower than n”,
= Z w; (07 — 07, )2 but can be however really
j=1 big!

alessia.pini@unicatt.it 11
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Bootstrap estimate of the variance.

Algorithm.

e Repeat B times:

— Draw a Bootstrap sample x;

— Evaluate the Bootstrap replication 0F = s(xz)

B
VarB—B 1;9,,—0

B px
with 9(> = 2> .05

e Estimate the variance with the variance of the B replications:

alessia.pini@unicatt.it
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Bootstrap estimate of the variance.

Algorithm.

e Repeat B times:

— Draw a Bootstrap sample x;

— Evaluate the Bootstrap replication 0F = s(xz)

e Estimate the variance with the variance of the B replications:

B
VarB—B 1;9,,—0

B hx
with 9(> = 2>, 05

[limB_mo \/fa}B = Vafﬁ(é*) }

alessia.pini@unicatt.it
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[limgéoo Varg = Var(6*) ]

How many bootstraps?

Nowadays often feasible to use a very big number (B>1000).
Need R > 100 for point estimate of bias, variance, etc.

Need R > 100, prefer R > 1000 to estimate tail quantiles (they will be needed
for 95% confidence intervals).

alessia.pini@unicatt.it
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Example: test score data.

§=0.6191, sep =0.0451, Biasg = —0.0051 (B = 500)

Histogram of Bootstrap replications

0 —
© -
>
=
(2]
c
() <t
O
o —
o - F——

I I I I I I
0.50 0.55 0.60 0.65 0.70 0.75

alessia.pini@unicatt.it 15



MKW UNIVERSITA
L & TN BOOTSTRAP
% < del Sacro Cuore

Bootstrap estimate of the bias.

The bias of 6 can also be estimated with the Bootstrap. A simple estimate is
the following: - ) )

Biasp = 92‘,) —0
The Bias can be estimated through the same algorithm presented before, by
using the average of B independent Boostrap replications 92‘.) = % Zil 0.

alessia.pini@unicatt.it
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A better Bootstrap estimate of the bias.

It applies only when 6 = t(F) (plug-in estimator). For the Bootrtap sample x*,
and for all j = 1,...,n, define P7 as the proportion of units in the bootstrap
sample that equals the jth original data point:

P; = 4H{xi = x;}/n
The quantities P} can be collected in the resampling vector P* = (P, ..., Py).

Clearly, for each Bootstrap sample, > =1 P =1

Now, 0* can be thought as a function of P*:

A

6" = T(P").

alessia.pini@unicatt.it
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A better Bootstrap estimate of the bias.

Similarly, we can define the resampling vector of the original data as

po_ (] 1
==z

And since 6 is the plug-in estimator:

T(P%) =t(F) = 0.

/{dea: compare PY with the distribution of P*: \

_ 1 B
P == P
Bb; b

E?iESB = é* — T (F())

N s =07 (P y

alessia.pini@unicatt.it
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A better Bootstrap estimate of the bias.

-

\_

e Bias B is the estimate that we first defined. It is easier to compute and
works for every estimator (not necessarily the plug-in estimator).

e Both estimates of the bias converge to the quantity Bias,, = Bias; as
B — oc.

e The convergence is faster for Biasp.
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In some cases we can assume that data follow a parametric distribution, but we
don’t know the parameters of such distribution.

In this case we can use parametric Bootstrap:

Monte Carlo Parametric Nonparametric
method Bootstrap Bootstrap
Amount of information about F >

alessia.pini@unicatt.it 20
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Parametric Bootstrap is based on the direct computation of:
Varg  (6%)

Where EFp,, is an estimate of F' derived from a parametric model.

For instance, if we assume X; ~ N(u,0?), we can estimate the parameters and
then obtain Fpar ~ N(fi, 52).

Bootstrap samples are now generated from Fpar, and finally we can evaluate 0
on the Bootstrap samples and compute the variance:

A

[x —  Fpyr — x* = 0 =skx") — Varﬁpar(é*)}

alessia.pini@unicatt.it 21
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/Algorithm. \

e Choose a parametric distribution F'p,, for the data.

e Estimate the parameters of the distribution using the sample x, obtaining
FPar-

e Repeat B times:

— Draw a Bootstrap sample x; from 3 Par-

— Evaluate the Bootstrap replication 6% = s(x?).

e Estimate the variance with the variance of the B replications:

B
VarB—B 1;6[)—9()

B A«
with 07, = 5 327, 6;

\_ | /
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Studio

Example: test score data.

§=0.6191, Sep=0.0402, Biasg =0.0042 (B = 500)

Parametric Bootstrap Replications

100
I

80

60
I

Frequency

40

20
I

I I I I I
0.50 0.55 0.60 0.65 0.70

alessia.pini@unicatt.it

23



& s PARAMETRIC VS NONPARAMETRIC

> CATTOLICA

% f del Sacro Cuore
VEpioL AN

» Parametric bootstrap is useful when we have some knowledge about data

distribution.

« The knowledge about the distribution reduces the variance of the estimate of

the distribution function, giving better results.

« However, if the assumption about the data distribution is not met, parametric

bootstrap can be biased.

« Nonparametric Bootstrap is not biased and more flexible. It does not require

any assumption on the data distribution.

» However, nonparametric bootstrap can give poor estimates in some cases
(e.g., when the support of the data distribution depends on the parameter

that we need to estimate).

alessia.pini@unicatt.it 24
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Misspecification of the parametric distribution: data generated from
Exponential distribution and parametric Bootstrap based on Normal

distribution.
Monte Carlo

Parametric Bootstrap Nonparametric Bootstrap
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The domain of the data distribution depends on theta. E.g., estimating the
upper bound of the domain of a Uniform distribution on (O,1):

Parametric Bootstrap Nonparametric Bootstrap Monte Carlo

o _ o _ o _
< < <
o _| o _| o _|
() () (0]
z M z z [
AR R R
(m] (m] (m]
o _| o _| ] o _|
| | | [ | | | | [ | | | |
0.80 0.85 0.90 0.95 1.00 0.80 0.85 0.90 0.95 1.00
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Jacknife is computationally more efficient than Bootstrap (it is based on only
simulating n data sets).

Bootstrap provides in general more reliable estimates. They tend to agree if
the statistic is linear, or if it has a smooth expression.

Jacknife fails for non-smooth statistics (e.g.,median).

alessia.pini@unicatt.it
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We apply the Bootstrap to estimate the standard error of the sample

median.
Bootstrap Monte Carlo
< 4 B < —
o — o — ]
= =
2 o 2 o
(o) (o)
(] (]
o ol o - o 'l HH
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DATA STRUCTURES

The bootstrap was described for a one-sample model:

» Individual data points can be numbers or more complex objects (vectors,

matrices, functions, images, ...).
« Data are produced from a single distribution F.

» The Bootstrap can be applied to more general data structures.

alessia.pini@unicatt.it
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DATA STRUCTURES

The bootstrap was described for a one-sample model:

» Individual data points can be numbers or more complex objects (vectors,

matrices, functions, images, ...).
« Data are produced from a single distribution F.

» The Bootstrap can be applied to more general data structures.

General Bootstrap algorithm:

e We start from an unknown probability model P generating data x.

e We find the (nonparametric or parametric) estimate P of the unknown
model P.

e We generate Bootstrap samples x* from the estimated model ]5, and use
them to evaluate the standard error, bias, and distribution of a quantity

of interest 6.

N J

alessia.pini@unicatt.it
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Assume that we observe two samples of dataz = (z1,...,zp) andy = (y1,.--,Yn)
(e.g., treatment and control). Denote as F' and G the distributions of z; and
y;, respectively, and assume that F' and G are independent.

Assume that we are interested in evaluating the mean difference between the

two groups:
0 = E[F] — E[G] = p12 — py.

e The unknown probability model is P = (F, G), with F' and G independent.

e The plug-in estimator of @ is 0=7-Y.

e P = (I,QG), being F (G) the empirical distribution of data z; (y;), and
x = (z,y).

e The Bootstrap samples can be computed as x* = (z*,y*) , where z* (y*)
is a sample of size m (n) drawn from the distribution F' (G).

m *

e The bootstrap replication is then §* = D DA S Vi

e The variance, standard deviation, bias, and distribution of 0 can be eval-
uated resampling B times from P.

alessia.pini@unicatt.it
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Consider a linear regression model

C’L? y’L

A

(1 x p) vector of covariates

response

alessia.pini@unicatt.it
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Consider a linear regression model

xi:(ci,yi) ZZl,,ﬂ

In linear regression we assume:
p
i = Elyilei] = eiB =) ciiB;.
j=1

This is true for the probabilistic model:
yi:Ci/@+5i izl,...,n
Where € = (¢1,...,¢€,) is a random sample from a distribution F' such that

Ele] =0 Varle] = 0°1,x,

alessia.pini@unicatt.it

33



7 5 T REGRESSION MODELS
*’@, 5 del Sacro Cuore
Yepror ™

The OLS estimator of the vector 3 is
(3 = arg minz (y; — cZ,B) (c'c) tC'y

that is an unbiased estimator with standard error

() = o J1(C'C)1;,

alessia.pini@unicatt.it



5 W REGRESSION MODELS
2/, M( del Sacro Cuore

The OLS estimator of the vector 3 is
B =argmin ) (y; — ¢;8)" = (C'C)"'Cly

that is an unbiased estimator with standard error

() = o J1(C'C)1;,

(T N

o apply the Bootstrap in this case we need to find an estimate of the model
P = (B, F), and generate Bootstrap samples from the estimated model.

Idea: Estimate 3 with the OLS estimator and F' with the empirical distri-

bution of regression residuals.

. /

alessia.pini@unicatt.it
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Bootstrap Algorithm for regression.

o

Estimate 3 with the OLS estimate B

Compute the residuals €; = y; — cq;,é.

Estimate the empirical distribution F of the residuals &;: F gives proba-

bility 1/n to each residual é&;.

A A

The estimated model is now P = (3, F).

Repeat B times:

— Generate a Bootstrap sample x; = (c;,y;) from P, with y; = ci3 +

*

£, -

— Compute the Bootstrap replication 8 = (C'C)~*C"y*.

~

/

alessia.pini@unicatt.it
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Consider a linear regression model @
ZEZ:(CZ,yZ) ZZl,,Tl ,

Given that the pairs (c;,y;) are sampled from model P, another option is Boot-
strapping directly the pairs!

x" = {(ci1,yi), (Ciz, Yi2), - - - s (Cin, Yin) }

|/

Random sample drawn with replacement from (1,2,...,n)

alessia.pini@unicatt.it 37
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Consider a linear regression model

ZIZZ':(Ci,yZ') 221,,?7,

—4

Given that the pairs (c;,y;) are sampled from model P, another option is Boot-
strapping directly the pairs!

x" = {(ci1,¥i1), (¢i2, Yi2), - - -, (Cin, Yin) }

» Bootstrapping residuals works well if the linear model assumed for the

regression is correct, and if the terms &; have the same distribution.

» Bootstrapping pairs is based on less assumptions: it is more robust to

misspecifications of the model.

alessia.pini@unicatt.it 38
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The OLS estimator of the vector 3 is

B = arg mmz (y; — c7;,8)2 = (C'C)"C'y
B 1=1
that is an unbiased estimator with standard error :f
W
() = o J1(C'C)1;, /

Why do we need Bootstrap to evaluate the standard error?

Point estimation of the standard error can be computed in the classical way,
without making distributional assumptions on the distribution of the residuals

Inference (confidence intervals and tests) on beta is done in the classical way
assuming normality.

In the following lecture we will see how to make inference based on Bootstrap
replications.

alessia.pini@unicatt.it
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Estimating the intercept of a correctly specified regression model with

Normal errors.

Bootstrapping residuals - beta0 Bootstrapping pairs - beta0
S 7 S 7 Theoretical
o ™\ o M\ i
f‘ / estimator
o o under
o o .
= = Normality
& &
a) =)
N N
o o
S - 5 -
[ o |
o o
T 1 T T 1T T 1 T 1 T T 1T T 1
-3 2 -1 0 1 2 3 4 -3 2 -1 0 1 2 3 4
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Estimating betal of a correctly specified regression model with Normal
errors.

Bootstrapping residuals - beta1 Bootstrapping pairs — beta1
8 - & - Theoretical
S of the OLS
° estimator
(\! —
S under
£ u Normality
5§ o
a
= 2
o B o B
3 _ 3 |
o o
8 _ 8 _
o o
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