\X(“lA S4C

E A
D - UNIVERSITA
2} s
c~> CATTOLICA
94
7

POINT ESTIMATE OF THE
STANDARD ERROR:
THE JACKNIFE AND THE BOOTSTRAP



AP UNIVERSITA
L & RN N INTRODUCTION
% < del Sacro Cuore

Estimation problem.

Assume that we observe a sample of size n of data following a certain (unknown)
distribution F:

X = (T1,...,xp), Wwithaz; ~ F Vie{l,...,n}

We focus on the problem of estimating one (or more) parameter 6 of the distri-
bution F'. We denote it as 6 = t(F).

Example. Expected value of the distribution:

0 = EF(SE)
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Estimation problem.

Assume that we observe a sample of size n of data following a certain (unknown)
distribution F:

X = (T1,...,xp), Wwithaz; ~ F Vie{l,...,n}

We focus on the problem of estimating one (or more) parameter 6 of the distri-
bution F'. We denote it as 6 = t(F).

/Aims: \

1. Give a point estimate of t(F) for a general case with
unknown F (nonparametric point estimation);
2. Assess the standard error of the estimate and its bias
(nonparametric point estimation of the standard error);
3. Give an interval estimate of t(F) and assess the interval
\ coverage probability. /
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The plug-in principle.

The plug-in principle is a simple method to estimate the parameter 6 from the
sample x.

Idea:
e Denote as F' the empirical distribution function, that is the discrete dis-
tribution that puts probability 1/n on each value x; ¢ = 1,...,n and zero
otherwise.

e The plug-in estimator  of the parameter § = t(F) is defined as 6 = ¢(F).

~

Example. Expected value of the distribution:

. 1 <
0 =Ep(x) = QZEF(:E):EE T,
i=1
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* The plug-in estimator is easy to compute in all cases (it is just a functional of
a discrete probability distribution that is always well defined).

* No matter how complex is theta, its plugin estimator can often be
numerically computed very easily.

* The plug-in estimator does not need to specify a parametric form of the data
distribution F, so it is very flexible.

» Ifinformation is available of the distribution F, the parametric estimator tend
to have better properties (lower variance and bias).
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How good is the estimate of a parameter?

MSE(6) = E[(6 — 6)?] =| Var(d) }+ (0 — E(0))?

—

of the of the
estimator. estimator.
How variable is § How different is in
on different data average () from the
sets true value

In order to assess how good is the estimator, we need to compute (or find an

estimate for ...) the variance and the bias, without knowing the distribution F.
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Methods for estimating variance and bias of an estimator:

« Analytic computation (only with F known and simple §)
Monte Carlo simulation (only with F known)

« Jacknife (F unknown)

* Bootstrap (F unknown or known)
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Imagine that F is fully know, we could answer then the question about the
distribution of # by analytical calculation (very rarely) or by simulations.

ﬂmulation with F known. \

e Forb=1,2,...,R:

— generate a random sample (of size n) xj = (z1,,...,2;, ) ~ F

— compute 0 = 6(x;) and collect the obtained value

A A

e Output after B iterations: 07,...,0%

e Use the output to estimate variance and bias:

B (4 B«
- Var( = 57 21 (0 — ()) with ‘9() =2 p—1 0

Jmc — b
\ — Bias(é) Mo =0 — 9() /

Note that the values HA’{, e A*B can be used also to estimate the distribution of

0 (histogram, density estimator, ...).
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« The methods gives us an estimate of bias and variance of the parameter, as
well as an estimate of its distribution, that can be used to perform inference

(interval estimation, tests).

« Thanks to the law of large numbers we know that as B tends to infinity,
we get a perfect match to theoretical calculation.

« However in reality we can’t simulate an infinite number of replicates, and

hence we introduce the Monte Carlo Error.
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Example:

We observe a sample of size 10 drawn from a bivariate Normal
distribution with Mean (0,0) and covariance matrix rbind(c(&2,1) ; ¢(1,2)).

We are interested in estimating the eigenvalues of the covariance matrix,

using the plugin estimator.

How wvariable is the estimator?
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First Eigenvalue Second Eigenvalue
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Standard deviation: 1.17 Standard deviation: 0.51
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» Monte Carlo simulation is very simple, but in reality we do not have access to
the true distribution F.

» In such cases, we need to find a method to (approximately) simulate samples

from F.

Remember that we start from a sample x of size n, with x; ~ F, Vi=1,...,n.
Assume that we want to estimate the parameter § = ¢(F') with the estimator
0 = s(x) (not necessarily the plug-in estimator).

We focus on samples that leave out one observation at a time:

[X(z') = (5517 vy Li—1y Litly .- - 7xn)]\ For a sample of size n,

we can construct n

1 Jacknife samples.

[ é(i) = s(x(i)) }—> n estimates of theta, each
based on n-1 units.
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Estimate of variance:

— n — 1 " N
VarJ = o (9(2') — 9( ))
1 =1
. 1 < .
0oy == %
1 =1

» Looks at the sample variance of the Jacknife replications.

» The sum of squares is inflated with the factor (n-1)/n, which is bigger than
the usual terms 1/(n-1) or 1/n.

» The inflation factor is needed since the Jacknife samples are very similar

between each other, so 0 (i) tends to vary less than 6.

» In the special case of estimating the sample mean, the inflation factor makes

the estimate of the variance correct.
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Special case: 0=2X
By theory we know:

Var (X
-

nn—lz::

/

And for the Jacknife estimate 0, = —+ D i—1.j2i Xj we have:

A

0y =

SIH

Zé()
— Z X;

.7 1,5#i

The Jacknife estimate of the variance is then:

— n—1 L, -
= E:@-—Xz
Var - (03 )

1=1
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Now:
9()—X—n_1ZX— ZX.
J#i
1 ik X X-X;
S — X; —1) X
n(n —1) nz (n Z J n—1
JF#t Jj=1
And finally:
Vi n—lzn:(Y—Xi)Q 1 z":(y X,)?
ar — = _ i
! no ‘= (n—1)2 n(n—1) =

» In the special case of estimating the sample mean, the inflation factor makes
the estimate of the variance coinciding with the plug-in estimator of the
variance of the sample mean (that is in this case unbiased).

» Note that this holds, however, just in this case! A
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Estimate of bias:

Bias; = (n —1)(d(.y — 6)

» Looks at the deviations between the Jacknife replications and the estimate.

« This deviation is also inflated with a factor, that is in this case (n-1), which is

bigger than 1.

» The inflation factor is needed since the Jacknife samples are very similar
between each other, and they also tend to be similar to the estimate based on

the whole sample.
» In the special case of estimating the sample mean, the bias is zero.

» In the case of the sample variance(divided by n), the inflation factor makes
the estimate of the bias correct.
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Special case: § = 13" (X, — X)2.

(/

By theory we know:
A 1
Bias(§) = ——o°.
n

And, for the jackknife estimate of bias, it is possible to show that:

n

_— 1 1 _
Bias; = —— n_1§ (X; — X)?
=1

» In the special case of estimating the sample variance with its biased
estimator, the inflation factor makes the estimate of the bias coinciding with
the plug-in estimator of the bias.

» Note that this also holds, however, just in this case! A
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Example: test score data.

We consider the test score data from Mardia et al. (1979). A group of
n=88 students took five tests in Mechanics, Vectors, Algebre, Analysis,
and Statistics.

The quantity that we would like to estimate is the ratio between the
largest eigenvalue of the covariance matrix of the scores, and the sum of

all eigenvalues of the covariance matrix.

0 — ?(1)

j=1 Aj

The closest is this ratio to one, the most the model can be reduced toa 1D
model where each student has a QI that explains the scores to all five tests
(a single measure can capture all information).

Xi = Qz’V(l)
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Example: test score data.

0 =0.6191, so; =0.0496, Bias; = 0.0011
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Example: test score data.

0 =0.6191, so; =0.0496, Bias; = 0.0011

Jacknife replications for test score data
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0.600 0.605 0.610 0.615 0.620 0.625 0.630 0.635
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» The jackknife estimates of the variance and bias are very easy to define.

* The computational time is very low: we only need to create n Jacknife data

sets, and n replications of theta.

» The formulas for Jacknife variance and bias do not have any theoretical
justification in general. In very special cases, we can prove good properties
(for instance, that they are unbiased estimates of the variance and bias).

It is not trivial to create confidence intervals with good properties based on
the Jacknife estimates.

e Jacknife can fail when the estimator of theta is not smooth.
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» The jackknife estimates of the variance and bias are very easy to define.

* The computational time is very low: we only need to create n Jacknife data

sets, and n replications of theta.

» The formulas for Jacknife variance and bias do not have any theoretical
justification in general. In very special cases, we can prove good properties
(for instance, that they are unbiased estimates of the variance and bias).

It is not trivial to create confidence intervals with good properties based on
the Jacknife estimates.

 Jacknife can fail when the estimator of theta is not smooth.
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An example of Jacknife failure: 0 = Median(F')

« We simulate a data set of sample size n=20 from a binomial distribution
of size 10 and probability 0.5 .

* The true median is of course 0.5* 10=5 (the distribution is symmetric).

« When estimating the median with the Jacknife, we notice that the
Jacknife replications are all really similar (they all coincide in most
cases).

 In many cases (when repeating the experiment), all Jacknife
replications are equal to 5 (the true median).

AWhen computing the Jacknife estimate of the variance, we obtain zero!

« Jacknife estimates are too similar to the original data set.
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An example of Jacknife failure: 0 = Median(F')

« We simulate a data set of sample size n=10 from a binomial distribution
of size 10 and probability 0.5 .

* The true median is of course 0.5* 10=5 (the distribution is symmetric).

« When estimating the median with the Jacknife, we notice that the
Jacknife replications are all really similar (they all coincide in most
cases).

 In many cases (when repeating the experiment), all Jacknife
replications are equal to 5 (the true median).

AWhen computing the Jacknife estimate of the variance, we obtain zero!

« Jacknife estimates are too similar to the original data set.

Delete-d Jacknife: leave out d observations at a time.

alessia.pini@unicatt.it
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We can try to leave out d observations at a time. In this case the estimate of
the variance is:

Number of
Jacknife samples

It can be shown that the delete-d Jacknife is consistent for the median when
vnd — oo and n — d — oo.

In practice, we have to leave out more than y/n and less than n observations at
a time.
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