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f% 5% PROBLEM FORMULATION

Functional data on L?(D)NCY(D), where D C RP.
Aim: test locally a functional hypothesis Hy against H;.

We assume that the domain D is a Riemaniann manifold of IRP
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Functional data on L?(D)NCY(D), where D C RP.
Aim: test locally a functional hypothesis Hy against H;.

We assume that the domain D is a Riemaniann manifold of RP

Example. Testing differences between two groups of functional
data defined on a complex chamaleon-shaped manifold

vil@) = pi(@) *eiila) G=1,2%i=1,...,n

Hy: pi(x) = pe(x) Vo € D; Hi : pi(x) # pe(z) for some x € D

B g 8 & = o
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Functional data on L?(D)NCY(D), where D C RP.
Aim: test locally a functional hypothesis Hy against H;.

True mean difference Pointwise t-test statistic Pointwise p-value

10

3 # & & g = 3 g 8 &

10
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5
.
z | '\_J Multiplicity issue!

“ no control of the amount of type I errors
over the domain.

AIM

Computing an adjusted p-value function defined on D that
controls an error rate defined on the whole domain.
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Pointwise p-value
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FDR-adjusted p-value function
Olsen et al 2021 TEST

p(t) = min WD) - s
p<t) T 17 Iu( )\

s>p(t) {r:p(r) <sj
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THE FUNCTIONAL FALSE
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DISCOVERY RATE

The FDR in multivariate statistics (Benjamini and Hochberg, 1995).

TABLE 1
Number of errors committed when testing m null hypotheses

Declared Declared Total
non-significant significant

True null hypotheses U A\ m
Non-true null hypotheses T S m —my
m—-R R m
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THE FUNCTIONAL FALSE
DISCOVERY RATE

The FDR in functional data analysis.

Declared non significant Declared
significant
True null U V m,
Hypotheses |, {t € D : Hy; true, p(t) > a}|p{t € D : Hy; true, p(t) < a}
False null T S m,
Hypotheses | ;,{t € D : Hy, false, p(t) > a}|u{t € D : Hy, false, p(t) < o}
m- R R m

FDRzE[% 1(R>O)]

alessia.pini@unicatt.it




3 ATTOLICA

THE FUNCTIONAL
iy R BENJAMINI HOCHBERG PROCEDURE

1. Choose a suited functional test (either parametric or non-parametric).

[ BT =Y HE:DF 437 }
2. Compute the unadjusted p-value function.
{ p(t) = limsup p* ]
T—t

3. Perform functional FDR procedure:
A. Adjust the threshold

{ p(t) < a®, with o = al'gzlgnax { ap{r M](?Z(;) < p} > p} }

B. Adjust the p-value
p(t) <a, with §(t) = min {17 u(D)s }
2\ alr i p) < 5
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#% .. THE CONTROL OF THE FUNCTIONAL FALSE
DISCOVERY RATE

pt) <a, with p(t)= 2ot {1’ p{r M](ﬁ“;sé S}}

p(t) <, with o =arg max{
p

ap{r :p(r) <p} _ _
(o 2

a I
Control of the functional FDR:
V (Do)
FDR=E|=1(R>0)| <« <«
[R ( )] u(D)
\ /
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Ball-wise adjusted p-value function
Olsen et al 2025+
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[ Functional data ]

A Family S of subsets of

ll *12 Sf ‘T l the domain: s; € S
p%2 P ptt p-values of test Hy’ vs H,’

W with statistic 7% = fsj T(t)dt

Adjusted p-value

B(t) = SES‘;{%)E Sp function Vi € D
[ teD:p(t) <a ] Domain selection
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TESTING

[ Functional data ]

AN

81 82 83 54

11l

S92 S3 S4

p-p-°p°p

4

p(t) = sup p°
seS:tes

!

(teD:pt)<a |

S1

Family S of subsets of
the domain: s; € S

p-values of test Hy’ vs H,’
with statistic 7% = fsj T(t)dt

Adjusted p-value
function Vt € D

Domain selection

Local adjustment

adjustment subsets should
take into account proximity

One dimensional domain:
adjustment sets are
intervals.

How to choose suitable
adjustment subsets when
the domain is a manifold?
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Idea: use balls as adjustment sets.

For a given manifold D with metric d, define B(z;¢) (the ball of ;‘Sr

center x and radius €) as 5 G
_z’l
B(x;e) ={y € D|d(z;y) < €}; x € D;e >0 -

The adjustment family S consists of the collection of all balls of
D of radius smaller than a constant r:

S ={B(z;€)}seD,e<r
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ADJUSTMENT SUBSETS

Idea: use balls as adjustment sets.
For a given manifold D with metric d, define B(z;¢) (the ball of .

i N
center  and radius €) as l “
B(z;e) = {y € D|d(z;y) < €}; z € D;e > 0 2L

The adjustment family S consists of the collection of all balls of
D of radius smaller than a constant r:

S ={B(z;€)}seD,e<r

Theorem 1. p(x) controls the ball-wise error rate:

Va € (0,1), VB(z,e) CD: Hj is true, P(3s € I : p(s) < a) < «
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% 16 ICE COVER DATA ANALYSIS

Example. Yearly measurements (1987-2015) of ice cover on the
northern hemisphere, as measured by the satellites of Copernicus
Programme. The aim is to test for significant change in ice cover
during the period.

yi(z) = a(z) + b(2)t; + €i(z)

Hy :b(x) =0Vx € D; Hi : b(x) # 0 for some z € D
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A PROBLEM FORMULATION

Example. Yearly measurements (1987-2015) of ice cover on the
northern hemisphere, as measured by the satellites of Copernicus
Programme. The aim is to test for significant change in ice cover
during the period.

Unadjusted p values
Trend sddev

40

20

-20

-40

|
-40 -20 0 20 40 -40 -20 0 20 40

-40 -20 0 20 40

fi
degrees from pole degrees from pole degrees from pole

Constant zero ice cover Constant zero ice cover Constant zero ice cover
Negative trend p-value smaller than 5%

p-value smaller than 1%
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ICE COVER DATA ANALYSIS

-20

U

degrees from pole

20 40

Constant zero ice cover

Adjusted p-value smaller
than 5%

Adjusted p-value smaller
than 1%
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A method for local inference of functional data with manifold domains.
» A novel way to adjust for multiplicity when the domain is complex.

» The adjustment methods can be plugged-in with every available testing
procedure.

UL ' Future works
I3

« Are balls the only available type of adjustment sets for local
adjustment?

« Isit possible to tune r with a data driven approach?

« Isit possible to develop a local adjustment for the false discovery
rate?

Niels Lundtorp Olsen, Alessia Pini, and Simone Vantini. False discovery rate for functional data. Test, 2021.

Niels Lundtorp Olsen, Alessia Pini, and Simone Vantini. Local inference for functional data on manifold
domains using permutation tests https://arxiv.org/abs/2306.07738
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4 ICE COVER DATA ANALYSIS

Adjusted p values with rmax = 1275km Adjusted p values, maximal radius

O

40
40

degrees from pole degrees from pole

Constant zero ice cover
Adjusted p-value smaller than 5%
Adjusted p-value smaller than 1%

02-04-2025 alessia.pini@unicatt.it



A EFFECT OF THE METRIC

« The control that is obtained is strictly related to the type of adjustment sets
that are used, which depends on the metric.

« By changing it, one can define different adjustment sets:

Spatial domain Spatiotemporal domain

H 0 true H 0 true

H 0 false H_ 0 false
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EFFECT OF THE RADIUS

« The radius r also influences the adjustment family and hence the control.

 Two extreme cases:

r—0

Adjustment subsets collapse
to points. No adjustment
is performed and:

The power is maximized,
but the error control is min-
imal.

r— OO

Adjustment subsets include
all possible balls. The pro-
cedure is very conservative
since the adjustment fam-
ily is very large. The power
is minimized, but the error
control is maximal.
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» One dimensional domains

» Manifold domains

% Global adjustment: the adjustment is based on the pointwise p-values only

% Local adjustment: the adjustment is based on the topological structure of the

domain
One dimensional D Manifold D
GlOb al Multivariate approaches (Holm, Functional FDR (Olsen etal 2021)
. Bonferroni, Benjamini Hochberg) Threshold Wise Testing (Abramowicz
adj ustment Functional FDR (Olsen etal 2021) etal 2022)
LOC&] Interval Wise Testing (Pini Vantini 2017) Ball Wise Testing
. Functional confidence bands (Liebl
adjustment Rheimerr 2023)
Partition closed testing (Vsevolozhskaya
etal 2014)
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NUMERICAL IMPLEMENTATION
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« Triangulation to approximate the points of the manifold.
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® ¢t NUMERICAL IMPLEMENTATION

 Triangulation to approximate the points of the manifold.
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% L4 NUMERICAL IMPLEMENTATION

 Integral approximation for computing the test statistic on balls.

w) du = Wie)f(e
IR > W

{veE:d(x,e)<r}

W(e) = % S A(S). ecE

S:e is a vertex of S
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¥ NUMERICAL IMPLEMENTATION

2NC

Triangulation to approximate the points of the manifold.
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Integral approximation for computing the test statistic on balls.
/BH fwdu= 7 W@

{veE:d(xe)<r}

Wi(e) = % > A(S), ecE

S:e is a vertex of §

Permutation tests to evaluate the p-value of tests on balls.

yi(z) = a(z) +b(2)t; + €i(x)

Freedman and Lane method:
Under Hj : y;(x) = a(x) + 52(33)‘_’ Permutation of the
— == estimated residuals under
gi(@)JF yilz) —alz) the null hypothesis
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